Robot assisted model-based test automation

Matti Vuori
Tampere University of Technology
Department of Pervasive Computing
In this slide set

• Comparison of robot-assisted model-based testing with traditional instrumentation approach.

• Discussion of benefits and pitfalls of both approaches.

• Goal: orientation for understanding these systems and issues related to their application.
Benefits of MBT

• Model-based testing is the most advanced form of test automation.
• Instead of static, manually designed test cases it uses models of the target system as a basis for generation tests dynamically.
• The result is an ability to cover very thoroughly the behaviour of a system during testing and an ability to alter test inputs even during long test runs.
Two ways of controlling the device under test (DUT)

1. Programmatically – a component in the device that can "press buttons", type text etc.

2. By a robot hand – one finger (or more) that can press buttons, type text etc. based on what a camera tells about what is available.

• We'll look more into these two alternatives – both of them have advantages and weaknesses.
Test system architecture for programmatic control

- Computer that runs the test
 - Model
 - Test generator
 - Test runner
 - Adapter
 - Communication means
 - Control component / API
 - Applications under test
- Device under test
Test system architecture for robot control
Instrumentation plusses

- Allows API level testing and checking of the internal state of the device/software.
- Easier problem detection and debugging.
- Detection of UI elements more reliable and fast than by OCR or image matching.
- More tolerant to UI changes (fonts, colours).
Problems of instrumentation

• Traditionally test automation is based on instrumenting the test target with extra software that feeds inputs to it and checks how the system responds.
• Or there might be a test interface that is not used on production use.
• Both create an extra level of control that can compromise the integrity of the system and alter its behaviour.
Instrumentation minuses in detail

- In-device adapter can be hard to build – a program development task in itself.
- Requires a good API to find elements.
- Invalidates the configuration.
 - Extra software.
 - Slowing down, possible timing changes.
 - Can we trust the test results?
- API level control does not guarantee that the same happens visibly to the user.
Benefits of robots

• When using a robot to control an application through its interface, such control software is not required and thus test results are more reliable.

• Furthermore, with a robot we can simulate user's behaviour more accurately.
Various levels of robot functionality

• One finger robot. Tapping, dragging.
• Two finger robot. Two finger gestures.
• Platform that can rotate to change device orientation.
• Etc…
• => More functionality – more cost.
Robot plusses in detail

- No extra components in the DUT.
- Can be done with any device, no need to access to OS or APIs.
- "What the test sees is what you get".
- Simulates the actual user experience.
- => Very reliable test results.
- => Test arrangements easy to understand, to trust.
Robot minuses in detail 1/2

- Robots cost a lot of money.
- Availability of test environments limited.
 - Robot reserved for long lasting tests.
- OCR and image matching can be slow and unreliable.
- Can not see below what is visible in the UI.
- Debugging more difficult.
- Debugging tests requires access to robot.
 (Emulation difficult.)
Robot minuses in detail 2/2

• Changing device orientation difficult with simple robots.
• Mechanical robots can cause hazards.
 – Harm to the device.
 – Hazards to the operator, passers-by.
 – Need to ensure physical safety just as with manufacturing robots.
• Need of supervision, maintenance.
• Complexities to remote testing.
Why not use real humans instead of a robot?

• So, why not use real humans?
• The kind of testing that robots are used for are
 – Repetitive in nature.
 – Can be executed for long duration.
• => Not suitable for humans.
Some vendors

- **OptoFidelity** provides robot-based test systems that can be used for testing mobile devices.
 - They also have a YouTube channel that show examples of robot-based testing.